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ABSTRACT: With a pedagogical aim suited for the undergraduate, in this study, the 

differential equations of motion that characterize and determine the motion of a simple 

pendulum were obtained considering small and large amplitudes of oscillation. These 

differential equations were solved through differential equation solution methods, 

numerical, expansion of functions and integrations. The solutions obtained using the 

different methods were compared. It was possible to verify, both experimentally and 

theoretically, that for the oscillatory movement of the simple pendulum, its oscillation 

period increases and its angular frequency decreases with the increase of the oscillation 

amplitude. The validity range of the approximation for small ranges of motion was also 

determined. It was verified that the theoretical and experimental results present a good 

agreement for angles smaller than 55°. The experimental measurements were made with 

“a low-cost home-built” equipment. It should be noted that some factors can generate 

discrepancies between experimental and theoretical results. 

KEYWORDS: Oscillations. Simple Pendulum. Large Amplitudes. Low-Cost Home-

Built Equipment. 

PÊNDULO SIMPLES: PERÍODO DEPENDENTE DA AMPLITUDE DE 

OSCILAÇÃO 

RESUMO: Com objetivo pedagógico voltado para o nível de graduação, neste estudo 

foram obtidas as equações diferenciais do movimento que caracterizam e determinam o 

movimento de um pêndulo simples considerando pequenas e grandes amplitudes de 

oscilação. Estas equações diferenciais foram resolvidas utilizando métodos de solução 

de equações diferenciais, métodos numéricos, expansão de funções e integrações. As 

soluções obtidas usando os diferentes métodos foram comparadas. Foi possível verificar, 

tanto experimental quanto teoricamente, que para o movimento oscilatório do pêndulo 

simples, seu período de oscilação aumenta e sua frequência angular diminui com o 

aumento da amplitude de oscilação. A faixa de validade da aproximação para pequenas 

amplitudes de movimento também foi determinada. Verificou-se que os resultados 

teóricos e experimentais apresentam uma boa concordância para ângulos de oscilação 

menores que 55°. As medições experimentais foram feitas com um equipamento de 

baixo custo construído pelos autores. Cabe ressaltar que alguns fatores podem gerar 

discrepâncias entre resultados experimentais e teóricos. 
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Experimento de Baixo Custo. 

 

INTRODUCTION 

Periodic and oscillatory motions are of great interest due to their diverse 

applications in the field of physics and engineering. A detailed study of the physics 

involved in these periodic movements is extremely important for a description of the 

phenomenon and for determining the laws that govern its movement (LANDAU, 1976). 

The knowledge of these laws brings a better clarity about the phenomenon in question, 

giving support to possible applications. An important example for an introductory study 

of oscillations is the ‘simple pendulum’ (NELSON, 1986). 

The word ‘pendulum’ comes from the Latin “pendulus”, which means “hanging”. 

A pendulum is a weight suspended from a pivot so that it can swing freely, Figure 1. 

When the pendulum is removed out of its equilibrium position and then released (with 

null initial velocity), it starts to oscillate. It is subject to a restoring force due to gravity 

that will accelerate it back toward the equilibrium position (Symon, 1971). The restoring 

force acting on the pendulum’s mass causes it to oscillate about the equilibrium position. 

The period 𝑇 of a vibratory motion is the time required for a complete to-and-fro motion 

or oscillation. In a complete oscillation the vibrating body moves from the equilibrium 

position, to the other end of the path, and back to the equilibrium position ready to repeat 

the cycle. The frequency 𝑓  of the vibratory motion is the number of complete 

oscillations per unit time. The frequency is the reciprocal of the period:𝑓 = 1/𝑇. The 

amplitude of a vibratory motion is the maximum displacement from the equilibrium 

position (RODRIGUES, 2020). 
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Figure 1 – Simple gravity pendulum. 

 
Source: authors. 

 

From the first scientific investigations of the pendulum around 1602 by Galileo 

Galilei (Newton, 2004), the regular motion of pendulums was used for timekeeping, and 

was the world’s most accurate timekeeping technology until the 1930s. The pendulum 

clock invented by Christiaan Huygens (ANDRIESSE, 2005) in 1658 became the 

world’s standard timekeeper, used in offices and homes for 270 years, and achieved 

accuracy of about one second per year before it was superseded as a time standard by 

the quartz clock in the 1930s (MARRISON, 1948). Pendulums are also used in scientific 

instruments such as accelerometers, seismometers, and gravimeters to measure the 

acceleration of gravity in geo-physical surveys. 

In this paper we obtain the period of the simple pendulum for small oscillations 

(Section 2) and for large oscillations (Section 3). Section 4 presents experimental 

measurements performed using a “low-cost home-built” equipment. Also in Section 4, 

comparisons are made between experimental and theoretical results. Section 5 is 

reserved for some final comments. 

 

SIMPLE PENDULUM: APPROXIMATION FOR SMALL OSCILLATIONS 

We consider a simple pendulum with frictionless pivot, no air resistance, and 

inextensible and massless wire. Figure 2 shows a scheme of the forces acting on mass 

𝑚, and their decompositions. 
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Two forces act on the particle of mass 𝑚: the weight 𝑃⃗  and the tension 𝑇⃗ . Weight 

𝑃⃗  can be written as follows (THORNTON, 2020) 

𝑃⃗ = 𝑃⃗ 𝜃 + 𝑃⃗ 𝑟 = −𝑃𝜃𝜃 + 𝑃𝑟𝑟̂,                (1) 

where 

sin𝜃 =
𝑃𝜃

𝑃
⇒ 𝑃𝜃 = 𝑃sin𝜃 = 𝑚𝑔sin𝜃, (2) 

cos𝜃 =
𝑃𝑟

𝑃
⇒ 𝑃𝑟 = 𝑃cos𝜃 = 𝑚𝑔cos𝜃.        (3) 

 
 

Figure 2 – Decomposition of forces in a simple pendulum. 

 
Source: authors. 

 

Using Newton’s 2nd Law (GOLDSTEIN, 1980) 

𝐹 = 𝑃⃗ + 𝑇⃗ = −𝑃𝜃𝜃 + 𝑃𝑟𝑟̂ − 𝑇𝑟̂,        (4) 

𝐹𝑟𝑟̂ + 𝐹𝜃𝜃 = −𝑃𝜃𝜃 + 𝑃𝑟𝑟̂ − 𝑇𝑟̂.         (5) 

Thus 

𝐹𝑟𝑟̂ = (𝑃𝑟 − 𝑇)𝑟̂,                   (6) 
 

𝐹𝜃𝜃 = −𝑃𝜃𝜃.                     (7) 

Eq. (4) can be written as follows 

𝑚𝑎 = −𝑃𝜃𝜃 + 𝑃𝑟𝑟̂ − 𝑇𝑟̂.                       (8) 

Using acceleration in polar coordinates 
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𝑎 = (𝑟̈ − 𝑟𝜃̇2)𝑟̂ + (2𝑟̇𝜃̇ + 𝑟𝜃̈)𝜃.                (9) 

For the simple pendulum we have 

 𝑟 = 𝐿 ⇒ 𝑟̇ = 0 ⇒ 𝑟̈ = 0, 

and 

𝑎 = −𝑟𝜃̇2𝑟̂ + 𝑟𝜃̈𝜃.                           (10) 

Inserting Eq. (10) into Eq. (8) 

𝑚(−𝐿𝜃̇2𝑟̂ + 𝐿𝜃̈𝜃) = −𝑃𝜃𝜃 + 𝑃𝑟𝑟̂ − 𝑇𝑟̂. 

 

Separating this last equation into two (since 𝑟̂ and 𝜃 are orthogonal vectors) 

−𝑚𝐿𝜃̇2𝑟̂ = (𝑃𝑟 − 𝑇)𝑟̂,                          (11) 

𝑚𝐿𝜃̈𝜃 = −𝑃𝜃𝜃.                               (12) 

Inserting Eq. (2) into Eq. (12) yields 

𝑚𝐿𝜃̈ = −𝑚𝑔sin𝜃, 

𝜃̈ = −
𝑔

𝐿
sin𝜃, 

𝜃̈ +
𝑔

𝐿
sin𝜃 = 0.                             (13) 

 

For small angles we can approximate: sin𝜃 ≈ 𝜃. Then, equation (13) becomes 

𝑑2𝜃

𝑑𝑡2
+

𝑔

𝐿
𝜃 = 0.                              (14) 

Defining 

𝜔0
2 =

𝑔

𝐿
,                                    (15) 

we have 

𝑑2𝜃

𝑑𝑡2
+ 𝜔0

2𝜃 = 0.                          (16) 

 

Equation (16) is a second order differential equation, homogeneous and with 

constant coefficients, that is, it is an equation of the type (RODRIGUES, 2017) 
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𝑎
𝑑2𝑌(𝑡)

𝑑𝑡2
+ 𝑏

𝑑𝑌(𝑡)

𝑑𝑡
+ 𝑐𝑌(𝑡) = 0.          (17) 

The solution to equation (17) is 

𝑌(𝑡) = 𝑐1𝑒
𝑥1𝑡 + 𝑐2𝑒

𝑥2𝑡, if 𝑥1 ≠ 𝑥2,             (18) 

or 

𝑌(𝑡) = 𝑐1𝑒
𝑥𝑡 + 𝑐2𝑡𝑒

𝑥𝑡, if 𝑥1 = 𝑥2 = 𝑥,        (19) 

where 𝑥 is the roots of the characteristic polynomial 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. 

Comparing Eq. (17) with Eq. (16) we have 

𝑎 = 1; 𝑏 = 0 and 𝑐 = 𝜔0
2, 

thus 

𝑥2 + 0 + 𝜔0
2 = 0 ⇒ 𝑥2 = −𝜔0

2 ⇒ 𝑥 = ±√−𝜔0
2. 

 

By Eq. (15) we note that 𝜔0
2 > 0, since 𝑔 and 𝐿 are positive quantities. Thus 

𝑥 = ±𝑖𝜔 ⇒ {
𝑥1 = +𝑖𝜔0

𝑥2 = −𝑖𝜔0
 

Substituting these values of 𝑥1 and 𝑥2 in Eq. (18), we have 

𝜃(𝑡) = 𝑐1𝑒
𝑖𝜔0𝑡 + 𝑐2𝑒

−𝑖𝜔0𝑡. 

Using Euler’s formula (Rodrigues, 2017), the previous equation becomes 

𝜃(𝑡) = 𝑐1[cos(𝜔0𝑡) + 𝑖sin(𝜔0𝑡)] + 𝑐2[cos(𝜔0𝑡) − 𝑖sin(𝜔0𝑡)], 

𝜃(𝑡) = (𝑐1 + 𝑐2) cos(𝜔0𝑡) − (𝑐2 − 𝑐1)𝑖sin(𝜔0𝑡). (20) 

Defining 
𝑐1 + 𝑐2 = 𝐴cos𝛽,                           (21) 

and 
(𝑐1 − 𝑐2)𝑖 = 𝐴sin𝛽,                       (22) 

where 𝛽 is a constant, Eq. (20) takes the form 

𝜃(𝑡) = 𝐴[cos𝛽. cos(𝜔0𝑡) − sen𝛽. sin(𝜔0𝑡)].    (23) 

Using the trigonometric relationship 

cos(𝛽 + 𝛿) = cos(𝛽) . cos(𝛿) − sin(𝛽). sin(𝛿), 

with 𝛿 = 𝜔0𝑡, Eq. (23) takes the form 

𝜃(𝑡) = 𝐴cos(𝜔0𝑡 + 𝛽).                     (24) 
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In Eq. (24) it is possible to identify that: 𝐴 is the amplitude of motion, 𝜔0 is the 

angular frequency and 𝛽 is the initial phase. Eq. (24) is the solution for 𝜃(𝑡) for the 

physical pendulum problem, considering small oscillations. Note that adopting a 

different definition in Eqs. (21) and (22), for example, 𝑐1 + 𝑐2 = 𝐴sin𝛽  and 

(𝑐2 − 𝑐1)𝑖 = 𝐴cos𝛽, the following solution would have been obtained 

𝜃(𝑡) = 𝐴sin(𝜔0𝑡 + 𝛽),                 (25) 

which is physically equivalent to Eq. (24). 

By Eq. (15) the angular frequency for the simple pendulum, considering small 

oscillations (sen𝜃 ≈ 𝜃) is 

𝜔0 = √
𝑔

𝐿
,                                 (26) 

and remembering that 𝜔0 = 2𝜋/𝑇0, period 𝑇0 is 

𝑇0 = 2𝜋√
𝐿

𝑔
.                               (27) 

Note from Eqs. (26) and (27) that for small oscillations the angular frequency 

𝜔0 and the period 𝑇0 are independent of the amplitude of oscillation of the movement. 

 

SIMPLE PENDULUM WITH LARGE AMPLITUDES 

The problem of simple pendulum motion for large amplitudes can be treated in 

terms of the total mechanical energy of the system (GOLDSTEIN, 1980) 

𝐸 = 𝐾 + 𝑉,                               (28) 

where 𝐾 is the kinetic energy and 𝑉 is the potential energy of the system. Note from 

Figure 3 that 

𝑉 = 𝑚𝑔∆𝑦 = 𝑚𝑔(𝑦2 − 𝑦1), 

and assuming 𝑦1 is at the origin of the 𝑌 axis 

𝑉 = 𝑚𝑔(−𝐿cos𝜃 − 0), 

𝑉(𝜃) = −𝑚𝑔𝐿cos𝜃.                          (29) 

 
 

 



 
 
 
 

 

_______________  
DAVID, R. S. Simple pendulum: period dependent on amplitude of oscillation. Revista Eletrônica Amplamente, 

Natal/RN, v. 2, n. 3, p. 534-552, jul./set. 2023. ISSN: 2965-0003. 

541 

Figure 3 – Potential energy 𝑉(𝜃). 

 
Source: authors. 

 

The kinetic energy 𝐾 is given by 

𝐾 =
𝑚

2
𝑣2. 

Velocity 𝑣 can be written in terms of the variable 𝜃 as: 𝑣 = 𝐿𝜃̇. Thus, the previous 

expression for the kinetic energy 𝐾 of the system can be expressed by 

𝐾 =
𝑚

2
𝐿2𝜃̇2.                               (30) 

Inserting Eqs. (29) and (30) in Eq. (28) we have 

𝐸 =
𝑚

2
𝐿2𝜃̇2 − 𝑚𝑔𝐿cos𝜃.                   (31) 

We will take the simplification that there are no dissipative forces in the system 

and therefore the total mechanical energy 𝐸 is constant. Figure 4 shows the curve of 

potential energy versus 𝜃. It is verified that for –𝑚𝑔𝐿 < 𝐸 < 𝑚𝑔𝐿 the movement is 

oscillatory. If mass 𝑚 were attached to a rigid rod (with negligible mass) of length 𝐿 

instead of a wire, the pendulum could rotate in a circle if 𝐸 > 𝑚𝑔𝐿 . Even so, this 

movement would still be periodic, as the pendulum would make a complete revolution 

each time 𝜃 increases by 2𝜋. 
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Figure 4 – Potential energy for the simple pendulum as a function of angle 𝜃. 

 
Source: authors. 

 

In this study we will consider only the case of a simple pendulum composed of 

a wire of length 𝐿 and a loose mass 𝑚, which is released from an initial angle smaller 

than 𝜋/2. Eq. (31) can be written as follows 

𝑚

2
𝐿2𝜃̇2 = 𝐸 + 𝑚𝑔𝐿cos𝜃, 

𝜃̇2 =
2𝐸

𝑚𝐿2
+

2𝑚𝑔𝐿

𝑚𝐿2
cos𝜃 =

2𝑔

𝐿
(

𝐸

𝑚𝑔𝐿
+ cos𝜃), 

𝜃̇ = √
2𝑔

𝐿
 √

𝐸

𝑚𝑔𝐿
+ cos𝜃, 

𝑑𝜃

𝑑𝑡
= √

2𝑔

𝐿
√

𝐸

𝑚𝑔𝐿
+ cos𝜃, 

∫
𝑑𝜃

√
𝐸

𝑚𝑔𝐿 + cos𝜃

𝜃

𝜃0

= ∫√
2𝑔

𝐿
𝑑𝑡

𝑡

0

, 

∫
𝑑𝜃

√
𝐸

𝑚𝑔𝐿 + cos𝜃

𝜃

𝜃0

= √
2𝑔

𝐿
𝑡.                  (32) 

The period of movement can be obtained by solving the integral between 

appropriate limits. When the motion is oscillatory, that is, 𝐸 < 𝑚𝑔𝐿 , the maximum 

value of 𝜃, which we will call 𝛼, is given according to Eq. (31) by 
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−𝑚𝑔𝐿cos𝛼 = 𝐸.                           (33) 

Thus, Eq. (32) becomes 

∫
𝑑𝜃

√cos𝜃 − cos𝛼

𝜃

𝜃0

= √
2𝑔

𝐿
𝑡.                    (34) 

The angle 𝜃  oscillates between the limits – 𝛼 < 𝜃 < 𝛼 . Let us consider the 

trigonometric relationship 

cos(𝐴 + 𝐵) = cos(𝐴) cos(𝐵) − sin(𝐴)sin(𝐵), 

and with 𝐴 = 𝐵 = 𝛾/2 

cos(𝛾/2 + 𝛾/2) = cos(𝛾/2) cos(𝛾/2) − sin(𝛾/2)sin(𝛾/2), 

cos (𝛾) = cos2(𝛾/2) − sin2(𝛾/2), 

cos (𝛾) = 1 − sin2(𝛾/2) − sin2(𝛾/2), 

cos(𝛾) = 1 − 2sin2(𝛾/2). 

Therefore 

cos(𝜃) = 1 − 2sin2(𝜃/2), 
 

cos(𝛼) = 1 − 2sin2(𝛼/2), 

and 
cos𝜃 − cos𝛼 = 1 − 2sin2(𝜃/2) − 1 + 2sin2(𝛼/2), 

 

cos𝜃 − cos𝛼 = 2[sin2(𝛼/2) − sin2(𝜃/2)].     (35) 

 

Inserting Eq. (35) into Eq. (34) we have 

∫
𝑑𝜃

√2√sin2(𝛼/2) − sin2(𝜃/2)

𝜃

𝜃0

= √
2𝑔

𝐿
𝑡, 

∫
𝑑𝜃

√sin2(𝛼/2) − sin2(𝜃/2)

𝜃

𝜃0

= 2√
𝑔

𝐿
𝑡, 

∫
𝑑𝜃

√sin2 (
𝛼
2)[1 − (

sin(θ/2)
sin(α/2)

)
2

] 

𝜃

𝜃0

= 2√
𝑔

𝐿
𝑡, 

∫
𝑑𝜃

sin (
𝛼
2
)√[1 − (

sin(θ/2)
sin(α/2)

)
2

] 

𝜃

𝜃0

= 2√
𝑔

𝐿
𝑡.     (36) 
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Remembering that the angle 𝜃 oscillates between the limits ±𝛼, and introducing 

a new variable 𝜑  that varies from 0  to 2𝜋  in a complete cycle of oscillation of 𝜃  as 

follows 

sin𝜑 =
sin(𝜃/2)

𝑎
,                           (37) 

where 
𝑎 = sin(𝛼/2).                              (38) 

Note that 

𝑑

𝑑𝜃
sin𝜑 =

cos(𝜃/2) 

2𝑎
, 

cos𝜑
𝑑𝜑

𝑑𝜃
=

1

2𝑎
cos(θ/2), 

2𝑎cos𝜑

cos(θ/2)
𝑑𝜑 = 𝑑𝜃.                           (39) 

By Eq. (37) 

sin2𝜑 =
sin2(θ/2)

𝑎2
, 

𝑎2sin2𝜑 = 1 − cos2(θ/2), 

cos2(θ/2) = 1 − 𝑎2sin2𝜑, 

cos(θ/2) = √1 − 𝑎2sin2𝜑.                   (40) 

Thus, Eq. (39) takes the form 

2𝑎cos𝜑

√1 − 𝑎2sin2𝜑
𝑑𝜑 = 𝑑𝜃.                     (41) 

Using Eqs. (37), (38) and (41), Eq. (36) becomes 

∫
1

𝑎√1 − sin2𝜑

𝜑

0

2𝑎cos𝜑

√1 − 𝑎2sin2𝜑
𝑑𝜑 = 2√

𝑔

𝐿
𝑡, 

∫
1

√cos2𝜑

𝜑

0

cos𝜑

√1 − 𝑎2sin2𝜑
𝑑𝜑 = √

𝑔

𝐿
𝑡, 

∫
𝑑𝜑

√1 − 𝑎2sen2𝜑

𝜑

0

= √
𝑔

𝐿
𝑡.                  (42) 
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This integral has the standard form of elliptic integrals (GRADSTHTEYN, 2007) 

∫
𝑑𝑥

∆
= 𝐹(𝑥, 𝑎), 

where ∆= √1 − 𝑎2sin2𝑥  and 𝐹(𝑥, 𝑎)  is called the elliptic integral of the first kind 

(WEISSTEIN, 2021). The integral of Eq. (42) can be solved by expanding the 

denominator into a power series, and then integrating term by term. Note that 

(1 − 𝑥)−1/2 = 1 +
𝑥

2
− ⋯ (−1 < 𝑥 ≤ 1). 

then 

(1 − 𝑎2sin2𝜑)−1/2 = 1 +
𝑎2sin2𝜑

2
+ ⋯ 

and the integral in Eq. (42) becomes 

∫ (1 +
𝑎2sin2𝜑

2
+ ⋯)𝑑𝜑

𝜑

0

= √
𝑔

𝐿
𝑡, 

𝜑 +
𝑎2

8
(2𝜑 − sin2𝜑) + ⋯ = √

𝑔

𝐿
𝑡.           (43) 

The period of movement is obtained by setting 𝜑 =  2𝜋 in Eq. (43) 

2𝜋 +
𝑎2

8
[4𝜋 − sin(4𝜋)] + ⋯ = √

𝑔

𝐿
𝑇, 

2𝜋 + 2𝜋
𝑎2

4
+ ⋯ = √

𝑔

𝐿
𝑇, 

𝑇 = 2𝜋√
𝐿

𝑔
(1 +

𝑎2

4
+ ⋯).                (44) 

Note that in Eq. (44) the term 2𝜋√𝐿/𝑔 is the period 𝑇0 of the simple pendulum 

for small oscillations (review Eq. (27) in Section 2). Thus, Eq. (44) becomes 

𝑇 ≈ 𝑇0 (1 +
𝑎2

4
).                            (45) 

Remembering that by Eq. (38), 𝑎 = sin(𝛼/2) , where 𝛼  is the limit angle of 

oscillation of 𝜃. Note by Eq. (45) that when the oscillation amplitude becomes large, the 

period becomes slightly longer than for small oscillations. The angular frequency 𝜔 of 

the motion can be obtained from Eq. (45) as follows 
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𝜔 =
2𝜋

𝑇
= √

𝑔

𝐿
(1 +

𝑎2

4
+ ⋯)

−1

, 

and using the expansion 

(1 + 𝑥)−1 = 1 − 𝑥 + 𝑥2 − ⋯ (−1 < 𝑥 < 1) 

the angular frequency 𝜔 takes the form 

𝜔 ≈ √
𝑔

𝐿
(1 −

𝑎2

4
).                         (46) 

Note that in Eq. (46) the term √𝑔/𝐿 is the angular frequency 𝜔0 of the simple 

pendulum for small oscillations (review Eq. (26) in Section 2). Thus, Eq. (46) becomes 

𝜔 ≈ 𝜔0 (1 −
𝑎2

4
),                     (47) 

evidencing that for large amplitudes the angular frequency is smaller than in the 

situation of small oscillation amplitudes. 

The period of oscillation 𝑇  of the simple pendulum can also be obtained without 

performing a power series expansion in the denominator of Eq. (42). By Eq. (42) 

√
𝑔

𝐿
𝑇 =

2𝜋

2𝜋
∫

𝑑𝜑

√1 − 𝑎2sin2𝜑

2𝜋

0

, 

𝑇 = 2𝜋√
𝑔

𝐿

1

2𝜋
∫

𝑑𝜑

√1 − 𝑎2sin2𝜑

2𝜋

0

, 

𝑇 =
𝑇0

2𝜋
∫

𝑑𝜑

√1 − 𝑎2sin2𝜑

2𝜋

0

.                   (48) 

The integral of Eq. (48) can be solved numerically. For this, some mathematical 

software can be used, such as Maple (GEDDES, 2021) or Mathematica (WOLFRAM, 

1991). Table 1 shows the results obtained for the ratio 𝑇/𝑇0 using equations (45) and 

(48). Numerical values were obtained using Mathematica WOLFRAM 11.0 

(WOLFRAM, 1991). 
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Table 1 – Results obtained for period of oscillation using Eqs. (45) and (48). 

Oscillation amplitude (angle 𝜶) 𝑻/𝑻𝟎 (Eq. 45) 𝑻/𝑻𝟎 (Eq. 48) 

1° 1.000019 1.000019 

5° 1.000475 1.000476 

10° 1.001899 1.001907 

15° 1.004259 1.004300 

20° 1.007538 1.007669 

25° 1.011711 1.012030 

30° 1.016746 1.017408 

35° 1.022605 1.023833 

40° 1.029244 1.031340 

45° 1.036611 1.039973 

50° 1.044651 1.049782 

55° 1.053302 1.060829 

60° 1.062500 1.073182 

65° 1.072172 1.086922 

70° 1.082247 1.102144 

75° 1.092647 1.118959 

80° 1.103293 1.137492 

85° 1.114105 1.157894 

90° 1.125000 1.180340 

Source: authors. 

 

Figure 5 shows the results presented in Table 1 for the period 𝑇/𝑇0. The square 

symbols were obtained using Eq. (48) and the dashed line using Eq. (45). Note that 

period 𝑇  is greater than period 𝑇0  and that as the amplitude of oscillation (angle 𝛼 ) 

increases, the discrepancy between period 𝑇 and 𝑇0 also increases. For an oscillation 

amplitude of 90° this difference is approximately 18% using Eq. (48) and 12% using 

Eq. (45). It is verified that the value of the period obtained using Eq. (48) is greater than 

that obtained using Eq. (45), and that the discrepancy between the two values increases 

with increasing amplitude of oscillation. 

 

Figure 5 – Dependence on the amplitude of the ratio 𝑇/𝑇0. Square symbol: Eq. (48). Dashed line: Eq. 

(45). 

 
Fonte: authors. 
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EXPERIMENTAL MEASUREMENTS 

The experimental measurements were made with “a low-cost home-built” 

equipment: PVC pipes, an attached protractor to measure the angle at which the 

pendulum was released, a solid sphere, nylon wire, and a mason level were used, Figure 

6. The length of the pendulum is 50 cm. The timing was performed with a cell phone 

stopwatch. The time ∆𝑡  spent by the pendulum to perform ten complete oscillations 

(𝑁 = 10 ) for each angle was measured. Period 𝑇  is: 𝑇 = ∆𝑡/𝑁 . Table 2 shows the 

experimental results obtained. The first column of Table 2 is the starting angle at which 

the pendulum was released. The second column is the time taken for the pendulum to 

perform 10 complete oscillations. The third column is the period obtained for these 10 

oscillations. Time measurements are in seconds and angle measurements are in degrees. 

From 5° the angle was varied from 5° in 5° up to the limit of 90°. It can be seen from 

Table 2 that when the oscillation amplitude is increased, the period 𝑇 also increases. 

 
Figure 6 – Equipment built to measure the period of the simple pendulum. 

 
Fonte: Os autores. 
 

 

 

 

Table 2 – Experimental measurements for the simple pendulum. 

Oscillation amplitude  

(angle 𝜶) 
∆𝒕 (s) 𝑻 = ∆𝒕/𝑵 (s) 

1° 14.27 1.427 

5° 14.27 1.427 

10° 14.27 1.427 

15° 14.30 1.430 

20° 14.30 1.430 

25° 14.34 1.434 

30° 14.57 1.457 
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35° 14.61 1.461 

40° 14.65 1.465 

45° 14.77 1.477 

50° 14.83 1.483 

55° 15.05 1.505 

60° 15.12 1.512 

65° 15.24 1.524 

70° 15.26 1.526 

75° 15.30 1.530 

80° 15.51 1.551 

85° 15.58 1.558 

90° 15.62 1.562 

Source: authors. 

 

Table 3 shows a comparison of the experimental results obtained for the period 

𝑇 of the simple pendulum with the theoretical expressions obtained in the Section 3. The 

first column of Table 3 is the initial angle that the pendulum was released. The second 

column is the period measured with the apparatus shown in Figure 6 (the same values 

as in the third column of Table 2). The third column is the theoretical values obtained 

using Eq. (44) and the fourth column is the theoretical values obtained using Eq. (48). 

𝐿 =  0,5 m and 𝑔 =  9.78 m/s2 were used in Eqs. (27), (45) and (48). With these values, 

using Eq. (27), 𝑇0 =  1.42068 s. It can be seen from Table 3 that in general: TEq. 48 > 

TEq. 45 > TEq. 27 > Texper.. 

 

Table 3 – Experimental and theoretical results for the simple pendulum. 

Oscillation amplitude 

(angle 𝜶) 
𝑻 (s) (experimental) 𝑻 (s) (expansion, Eq. 45) 

𝑻 (s) (integral, 

Eq. 48) 

1° 1.427 1.421 1.421 

5° 1.427 1.421 1.421 

10° 1.427 1.423 1.423 

15° 1.430 1.427 1.427 

20° 1.430 1.431 1.432 

25° 1.434 1.437 1.438 

30° 1.457 1.444 1.445 

35° 1.461 1.453 1.454 

40° 1.465 1.462 1.465 

45° 1.477 1.473 1.477 

50° 1.483 1.484 1.491 

55° 1.505 1.496 1.507 

60° 1.512 1.509 1.525 

65° 1.524 1.523 1.544 

70° 1.526 1.537 1.566 

75° 1.530 1.552 1.590 

80° 1.551 1.567 1.616 

85° 1.558 1.583 1.645 

90° 1.562 1.598 1.677 

Source: authors. 
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Figure 7 shows the period as a function of amplitude using the values of Table 

3. The solid line was obtained using Eq. (48) and the dashed line was obtained using Eq. 

(45). Circles represent experimental results. Note that for angles smaller than 55º there 

is good agreement between experimental and theoretical results. 

 
Figure 7 – Comparison between experimental and theoretical results of the dependence on the amplitude 

of the period 𝑇. In Eqs. (27), (45) and (48): 𝐿 =  0,5 m and 𝑔 =  9.78 m/s2. 

 
Source: authors. 
 

FINAL COMMENTS 

In this paper, the differential equations of motion that characterize and determine 

the motion of a simple pendulum were obtained considering small and large amplitudes 

of oscillation. These differential equations were solved through expansion of functions 

and integrations.  

It was possible to verify, both experimentally and theoretically, that for the 

oscillatory movement of the simple pendulum, its oscillation period increases and its 

angular frequency decreases with the increase of the oscillation amplitude. The validity 

range of the approximation for small ranges of motion was also determined. It was 

verified that the theoretical and experimental results present a good agreement for angles 

smaller than 55°.  

The experimental measurements were made with “a low-cost home-built” 

equipment. It should be noted that some factors can generate discrepancies between 

experimental and theoretical results. Among these factors, we can highlight: a) error in 
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measuring the length of the wire; b) error in the measurement of the angle of oscillation; 

c) error in the measurement of time for oscillations; d) error in starting the chronometer 

at the exact moment when the pendulum is released and in locking the chronometer 

when the pendulum reaches its maximum amplitude in ten oscillations; e) air 

displacements occurred during the measurements; f) air resistance; g) friction at the 

point of support of the pendulum. 
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